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The technological importance of polycrystalline strontium titanate �SrTiO3� is directly linked to its interfa-
cial and grain boundary properties, which are at present poorly understood. A complete understanding �includ-
ing links with experiment� requires information from many length scales, including electronic and atomistic, up
to microstructural and macroscopic. In addition, the size and complexity of many general grain boundaries
makes first-principles simulations prohibitively expensive. We have tested the ability of a number of inter-
atomic potentials from the literature to accurately describe at least the structures of some simple grain bound-
aries in SrTiO3. The potentials we have tested are of three types: rigid ion model with either fixed formal or
partial charges and shell model. We have also performed a detailed density functional theory �DFT� study of
the same boundaries and used this data �interface structures and energies� to validate the interatomic potentials.
Our conclusion is that none of the potentials can reproduce the energy ordering of the boundaries predicted by
the DFT calculations. The boundary structures produced by some of the potentials do however agree reason-
ably well with the DFT structures. We discuss the implications of our findings for ionic oxide grain boundary
research and critically examine the rigid ion and shell model approximations.
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I. INTRODUCTION

Computer simulations are playing a vital role in furthering
our understanding of grain boundary �GB� structure and
properties. Classical simulations have been used extensively
in investigations of the structure of tilt boundaries in pure
cubic metals.1 More recently, classical molecular dynamics
studies have clarified the role of grain boundaries in the de-
formation mechanisms of nanocrystalline metals.2 A recent
computational study of twist boundaries in silicon showed
that the lowest energy boundaries could only be accessed by
removing atoms from within a slab of finite width centered
on the GB.3 The resulting configurations were used as the
starting points for long �60 ns� molecular dynamics simula-
tions. The long-range nature of the Coulomb interaction
makes such large-scale simulations of intefaces in ionic ma-
terials more time-consuming and in the early days of sci-
entfic computing, this was a serious impediment to the study
of ionic interfaces. However, increases in computer power
and improved algorithms mean this is no longer such a prob-
lem. Ionic materials contain at least two different species of
atom and this does introduce additional complications. For
example, in any multicomponent system interfacial free en-
ergies are a function of the chemical potentials of the con-
stituents, as manifest in the Gibbs adsorption equation. The
stoichiometry of the interface, described by interfacial excess
quantities, should therefore be varied to minimize the inter-
facial free energy. Furthermore, if the simulations are being
performed with periodic boundary conditions, any charged
point defects that are present will interact with an infinite
array of images of themselves, as well as with a compensat-
ing background; this will affect the interfacial energy. Hence,
computer simulations of ionic interfaces are usually limited
to relatively simple, defect-free boundaries with small peri-

odic cells and consequently, less is known about grain
boundaries in ionic materials than in metals.

In this paper, we present a detailed atomistic study of the

SrO3-terminated �3�111��1̄10� and SrTiO-terminated

�3�112��1̄10� symmetrical tilt grain boundaries �STGB� in
SrTiO3. SrTiO3 is a technologically important perovskite
electroceramic. For example, in addition to being used as a
barrier layer capacitor, it is also a candidate for use in high-
density electronic memory applications4 and shows promise
as a potential thermoelectric material.5 The bulk properties of
SrTiO3 are generally well understood, however the same
cannot be said of SrTiO3 grain boundaries. In the present
work, only stoichiometric boundaries have been studied, that
is, boundaries with no excess of any of the three components
�Sr, Ti, or O�.

The Si twist boundary simulations described above are
currently only feasible with interatomic potentials. Before
we can perform such simulations for grain boundaries in
SrTiO3, we must first identify a suitable interatomic poten-
tial. The purpose of this investigation is therefore to test the
available interatomic potentials for SrTiO3 on some rela-
tively simple grain boundaries and to compare the results to
first-principles density functional theory �DFT� calculations.
We have calculated the relaxed structures and energies of the
chosen interfaces and located stable translation states by ex-
ploring the � surface.6 In order to keep the ab initio simula-
tions manageable, we have chosen periodic boundaries with
small unit cells. There have been several previous studies,

both experimental7,8 and theoretical,9–11 on the �3�111��1̄10�
STGB and one experimental study of the ��112��1̄10�
system.12

Throughout this work we will implicitly assume that the
DFT in the local density approximation �LDA� reliably gives
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accurate grain boundary energies. The success of DFT in
material modeling suggests that this is a very reasonable as-
sumption. However, there have been no high-level calcula-
tions �Quantum Monte Carlo �QMC�, for example� on grain
boundaries; hence we have no guarantee that the commonly
used DFT approximations �LDA and generalized gradient
approximation �GGA�� will not produce systematic errors in
the grain boundary energies. Alfé and Gillan13 recently per-
formed a series of QMC calculations on the �001� surface of
MgO. Their results showed that the QMC and LDA energies
were in good agreement but that the GGA energy was too
low by �30% �the apparently superior performance of the
LDA is thought to be due to a more favorable cancellation of
errors than in the GGA �Ref. 14�; there has been recent
progress on the surface energy problem for GGAs �Refs. 15
and 16��. There have been no such studies assessing the per-
formance of DFT for grain boundary energies. The changes
in atomic coordination at a grain boundary are less abrupt
than at a surface, hence grain boundary energies should not
be in error �if they are in error at all� as much as GGA
surface energies. However, researchers should be aware of
the possibility of DFT errors when comparing the results of
DFT and interatomic potential calculations of grain bound-
aries, particularly when there are large local changes in the
coordination of ions.

This paper is organized as follows. In Sec. II, we describe
our computational methods, starting with a brief review of
the classical models used in this work. The structures of the
grain boundaries we are investigating are described in Sec.
II C and one of the candidate interatomic potentials is used to
compute the � surface for the �3�112� GB. We present DFT
results on the structures and energetics of the boundaries in
Sec. III A and results for the classical models in Sec. III B.
We compare our findings to those of other authors in Sec. IV
and we conclude in Sec. V.

II. CALCULATIONS

A. Classical potentials

Perhaps the most widely used classical model of inter-
atomic forces in ionic materials is the modified Buckingham
potential,

Uij = A exp�− rij/�� −
C6

rij
6 +

qiqj

rij
, �1�

where A, �, and C6 are parameters to be fitted. The exponen-
tial term on the right-hand side of the equation is short
ranged and represents repulsive overlap interactions between
pairs of ions. The second term is longer ranged and repre-
sents attractive van der Waals interactions between the ions.
These first two terms together constitute the Buckingham
potential. The third term is the Coulomb interaction between
pairs of ions of charge q �fixed formal charges are assumed�.

The simplest way to improve the Buckingham picture of
rigid ions is to include terms which describe the polarizabil-
ity of the ions. The earliest approach is provided by the shell
model of Dick and Overhauser,17 in which an atom is repre-
sented as a core attached to a massless shell of charge qs by

a harmonic spring. The core represents the nucleus of the
atom plus all the inner electrons while the shell represents
the outer or valence electrons. The sum of the core and shell
charges is equal to the formal charge on the ion. The free-
atom polarizability � is thus given by:

� =
qs

2

k
, �2�

where k is the spring constant. Both the shell charge and the
spring constant are empirical parameters. The shells repel
each other through the short-range interaction while the Cou-
lomb interaction acts on both cores and shells.

The shell model can be further improved by allowing the
radius of the shells to vary in response to their environment,
as in the breathing shell model18 or the more recent com-
pressible ion model �CIM� of Pyper et al.19,20 The compress-
ibility of an ion has a significant effect on its properties; this
is particularly true of the O2− ion, which is unstable in free
space. The aspherical ion model �AIM� of Madden and
coworkers21 also takes account of dipole polarizability and
ion compressibility, as in the shell and compressible ion
models. In addition, the AIM includes terms which describe
the quadrupole polarizability of the ions.

While the functional forms and parameters of the above
polarizable ion models are mostly empirical, the general con-
cepts can be derived from density functional theory, via a
tight-binding representation of the electronic structure.22

Tight binding can incorporate in a physically based model
the concepts of polarization and charge transfer, besides the
Coulomb interaction. The difficulty, both in tight binding and
its derivative classical models, lies in the fitting of functions
and parameters to experimental or computed data, and the
subsequent all-too-common discovery that an empirical
model may not be as transferable as its authors hoped. This
leads to the common situation that several potentials are
available in the literature for most common materials.

None of the potentials we have selected for testing were
fitted to grain boundary structures or properties. Akhtar
et al.23 used a modified Buckingham potential in combina-
tion with the shell model to investigate the relationship be-
tween electrical properties and defect structures in doped and
undoped bulk SrTiO3. McCoy et al.24 also used the Bucking-
ham and shell models in their study on the stability of the
Ruddlesden-Popper shear phases in SrTiO3. Crawford and
Jacobs25 used a modified Buckingham potential to calculate
the solubility of various impurity ions in SrTiO3. Thomas
et al.26 developed a simple pair potential for simulating ra-
diation damage in complex oxides. It is a partial charge
model, which consists only of a Born-Mayer repulsion term
and a Coulomb term. The partial charges were derived from
a Mulliken population analysis from ab initio calculations of
bulk SrTiO3.

The accurate description of the structures and energetics
of our chosen grain boundaries will provide a demanding test
of transferability for these potentials.

All of our classical simulations have been performed with
the GULP �Ref. 27� package. We used the published cutoff
radius for each potential, in combination with a tapering
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function �fifth order polynomial�, which was applied 1–2 Å
before the cutoff. The tapering function ensures that the po-
tential goes smoothly to zero, thereby eliminating disconti-
nuities in the energy and its derivatives. Although the authors
of the potentials described above did not apply tapering func-
tions in their work, we found that doing so made the simu-
lations considerably more stable �faster convergence in struc-
tural optimizations and smaller forces on the final, relaxed
structure�. Table I lists the parameters for each potential con-
sidered in this work.

B. First-principles calculations

Our first-principles calculations have been performed
within the LDA to DFT as implemented in the CASTEP

package.28 Ionic cores were represented by the ultrasoft
pseudopotentials provided with the CASTEP distribution. The
explicitly treated valence states were �3s2 ,3p6 ,3d2 ,4s2� for
Ti, �4s ,4p ,5s� for Sr, and �2s ,2p� for O. For comparison, we
also performed a second set of DFT-LDA calculations with
the mixed-basis pseudopotential �MBPP� code of Refs. 29 and
30. Norm-conserving pseudopotentials were used for the
ionic cores. The explicitly treated valence states and the
k-point mesh were the same as with CASTEP. A mixed basis
of plane waves up to a cutoff energy of 340 eV plus a set of
atom-centered orbitals for the stronger localized semicore
and valence states were used. Further technical details can be
found in Refs. 9 and 31.

The grain boundary energy and free volume expansion for

both the �3�111��1̄10� and ��112��1̄10� STGBs were found
to be converged with a plane wave cutoff of 500 eV and a
4�4�1 Monkhorst-Pack mesh. We performed a full opti-
mization of the internal coordinates for each grain boundary
using the Broyden-Fletcher-Goldfarb-Shanno algorithm and
a force convergence tolerance of 0.05 eV /Å. We also opti-
mized the length of the c axis �which is perpendicular to the
interface in our models� while keeping the a and b axes fixed
at their theoretical lengths.

The grain boundary energy, �GB, for a stoichiometric in-
terface is defined as

�GB =
EGB − Ebulk

2A
, �3�

where EGB and Ebulk are the total energies of the grain bound-
ary and bulk supercells respectively, and A is the area of the
interface; the factor of 1/2 is needed to account for the pres-
ence of two symmetrically equivalent grain boundaries per
simulation cell �all of our simulations are performed in peri-
odic boundary conditions�. The bulk supercells had the same
physical dimensions and number of atoms as the grain-
boundary-containing cells and their energies were calculated
with the same plane wave cutoff and k-point sampling. Table
II shows the physical dimensions and grain boundary sepa-
ration for each supercell we investigated.

C. Grain boundary structures: Exploring the � surface

One grain can be rigidly displaced relative to the other in
directions parallel to the interface. Such an operation is

known as a rigid body translation t. We wish to locate all the
metastable energy minima, which we need for comparison of
different potentials, besides locating the global minimum en-
ergy for a given model. Stable configurations can be initially
located either by visual inspection �one may be able to iden-
tify mirror or mirror-glide planes by examining the symme-
try properties of the boundary� or computationally, by ex-
ploring the � surface, which gives the grain boundary energy

TABLE I. Interatomic potential parameters for the models being
tested in this work. All the models assume fixed formal charges on
the ions, except for the Thomas potential, which assumes fixed
partial charges. A dash in any column indicates that that particular
term is zero �absent� for the potential. Note that there is an error in
the value of � for the O2−-O2− interaction of the McCoy potential as
originally published in Ref. 24. We reproduce the correct value
here.

Interaction
A

�eV�
�

�Å�
C

�eVÅ−6�

Buckingham Potentials

Akhtar

Sr2+–O2− 776.84 0.35867

Ti4+–O2− 877.20 0.38096 9.0

O2−–O2− 22764.3 0.1490 43.0

McCoy

Sr2+–O2− 682.172 0.39450

Ti4+–O2− 2179.122 0.30384 8.986

O2−–O2− 9547.960 0.21916 32.00

Crawford

Sr2+–Sr2+ 9949.1 0.2446

Sr2+–Ti4+ 12708.1 0.2191

Sr2+–O2− 1805.2 0.3250

Ti4+–Ti4+ 16963.1 0.1847

Ti4+–O2− 854.0 0.3770

O2−–O2− 22764.3 0.1490 20.37

Thomas

Sr1.84+–O1.40− 1769.51 0.319894

Ti2.36+–O1.40− 14567.4 0.197584

O1.40−–O1.40− 6249.17 0.231472

Shell Models

Species qs

��e��
k

�eVÅ−2�
Akhtar

Sr2+ 1.526 11.406

Ti4+ −35.863 65974.0

O2− −2.389 18.41

McCoy

Ti4+ −0.1 200

O2− −2.04 6.3

Crawford

Sr2+ 7.468 421.9

Ti4+ −35.863 30490.0

O2− −2.249 24.9
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at each translation t.6 The � surface is constructed by choos-
ing a particular translation vector parallel to the boundary
and then constraining each atom so that it may move only
perpendicular to the interface. The a- and b-cell lengths re-
main fixed throughout the simulation, while the c-cell length
is systematically enlarged in small increments. The energy is
calculated for each c-cell length and the lowest-energy struc-
ture becomes a data point on the � surface. While the grain
boundary energy so calculated has no physical significance,
the structure provides a useful starting point for an uncon-
strained relaxation, during which the translations and atomic
positions are all free.

We have calculated the � surface for both the

�3�111��1̄10� and �3�112��1̄10� STGBs using the ionic part
of the Akhtar potential �the shells are “frozen” to their cores�.
Our results for the �3�111��1̄10� boundary agree with previ-
ous experimental7 and theoretical9 studies in that the most
stable state is mirror symmetric, which we define as t
= �0,0��112̄� , �1̄10�. In the discussion that follows we will

therefore only consider results for the ��112��1̄10� STGB.

Figure 1 shows the � surface for the �3�112��1̄10� grain
boundary. There is a trough of low-energy states present be-
tween �t= �−1 /5,0� and t= �0,0�. The dots and triangles

superimposed on the � surface represent simulation cells
where the atomic constraints have been released, i.e., the
atoms are freed to move in the x, y, and z directions. The
dots represent structures which were constructed in the par-
ticular translation state shown on the plot and then “slide
into” the mirror-symmetric t= �0,0� state upon atomic relax-
ation. The triangles represent structures which slide into a t

= �2a0� /3�111̄� state upon atomic relaxation �the 2 /3�111̄�
state is equivalent to the −1 /3�111̄� state shown in Fig. 1�.
Hence, when the constraints are released there is no longer a
series of low-energy states around t= �0,0�, but two distinct

minima at t= �0,0� and t= �2a0� /3�111̄�. This indicates that
atomic relaxations parallel to the interface are as important
as those perpendicular to the interface.

We therefore have three candidate structures on which to
test the interatomic potentials: the SrO3-terminated

�3�111��1̄10� grain boundary and the SrTiO-terminated

�3�112��1̄10��0,0� and O2-terminated �3�112��1̄10��2 /3,0�
boundaries. Since the tilt axis is �1̄10� for all three bound-

aries, we will refer to the �3�111��1̄10� GB as simply the
�3�111� boundary and the two �3�112� boundaries as
�3�112��0,0� and �3�112��2 /3,0�. The �3�111� and
�3�112��0,0� boundaries both have mirror-symmetry, while
the �3�112��2 /3,0� has mirror-glide symmetry. The struc-
tures of the grain boundaries are shown in Figs. 2 and 3.
Figure 4 shows the relationship between the �3�112��0,0�
and �3�112��2 /3,0� grain boundaries.

TABLE II. Simulation cell dimensions and grain boundary sepa-
rations. The theoretical lattice constant for bulk SrTiO3 is given by
a0=3.857 Å �DFT-LDA�.

Number
of

atoms
Axes

�a, b, c�
Dimensions
��a�, �b�, �c��

Grain
boundary
separation

�Å�

�3�111��1̄10�
60 �112̄�,�1̄10�,�111� �6a0,�2a0,2��3a0 6.68

120 �6a0,�2a0,4��3a0 13.36

��112��1̄10�
60 �111̄�,�1̄10�,�112� �3a0,�2a0,2��6a0 9.45

120 �3a0,�2a0,4��6a0 18.89
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FIG. 1. �Color online� The � surface for the �3�112��1̄10� grain

boundary �left�. The x and y axes represent translations along �111̄�
and �1̄10�, respectively, in units of the length of the �1̄10� and �111̄�
vectors. The energies plotted are the grain boundary energies of the
translation states, with darker colors representing lower-energy in-
terfaces. The meaning of the data represented by the solid black
dots and triangles is explained in the text. The variation of the grain

boundary energy with the x coordinate fixed at �1̄10�=0 is shown in
the right-hand-side image.

[111]

[11-2]

[-110]
[-110]

[112]

[11-1]

FIG. 2. �Color online� Unrelaxed structures of the �3�111� �left�
and �3�112��0,0� �right� grain boundaries. The arrows indicate the
position of the grain boundary in each model. Blue spheres repre-
sent Sr ions, yellow spheres represent Ti ions, and red spheres rep-
resent O ions.

[-110]
[112]

[11-1]

FIG. 3. �Color online� Unrelaxed structure of the �3�112��2 /3�
GB. The atomic coloring scheme is the same as that for Fig. 2.
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III. RESULTS

A. First -principles calculations

The creation of an unrelaxed grain boundary from trun-
cated crystal lattices will often bring atoms very close to-
gether at the interface. The boundary expansion is a response
to the strong repulsion between these atoms �the expansion is
defined as the excess volume of the boundary per unit area; it
can also be thought of as the component of t perpendicular to
the interface�. Our calculated values of the expansion and
energy for the �3�111� boundary �Table III� are in good
agreement with those of previous DFT calculations.9–11 They
are also in good agreement with the recent high-resolution
transmission electron microscopy �HRTEM� experiments of
Zhang et al.,8 who found that the interplanar spacing of the
planes immediately adjacent to the grain boundary was in-
creased relative to the bulk value.

Figure 5 shows how the interplanar spacing varies as a
function of distance from the interface for 60- and 120-atom
models of a relaxed �3�111� boundary. The deviation from
the bulk �111� interplanar spacing �dij between adjacent
planes i and j is defined as

�dij = ���Srj
z + O j

z�/2� − Tii
z� − dbulk. �4�

The terms Srz, Tiz, and Oz denote the relaxed z coordinates of
the Sr, Ti, and O atoms, respectively, and dbulk is the inter-
planar spacing between �111� planes in bulk SrTiO3 from
DFT-LDA calculations. The SrO term in square brackets re-
ally denotes the average relaxed coordinates of the relevant
atoms because the SrO layers rumple, i.e., the displacements
of the Sr and O atoms along z are not equivalent. The rum-
pling �also plotted in Fig. 5� of the ith SrO layer 	i is defined
as

	i = Sri
z − Oi

z. �5�

We have used the notation of Ref. 32 in defining �d and 	.
Figure 5 shows that the interplanar spacing oscillates

about its bulk value and converges about four planes from
the boundary for the 120-atom model. Both the 60- and 120-
atom models show a similar relaxation pattern, which sug-
gests that finite size effects on the atomic relaxations are
small. Also shown in Fig. 5 is the rumpling of the SrO layers
for the 120-atom model, which is greatest close to the bound-
ary before decaying very quickly to its bulk value.

Deviations from the bulk �112� interplanar spacing and
rumpling for the �3�112��0,0� boundary are shown in Fig.
6. Again, the interplanar spacing oscillates about its bulk
value but this time, the amplitudes of the oscillations are
larger close to the boundary and they decay much more
slowly in comparison to the �3�111� boundary. The bound-
ary energy, 1.06 J m−2, is significantly higher than that of
the �3�111� GB. Ideally, one would like to find some rela-
tionship between the boundary energy and expansion and
perhaps relate changes in these parameters to properties of
the constituent grains, such as the interplanar spacing. How-
ever, for boundaries with periodicity in the boundary plane
�such as the ones we are studying�, it is not possible to sim-
ply correlate the energy with the expansion because these
quantities are complicated functions of many variables: the
translation state t, the presence of directional bonding, and

TABLE III. Relaxed grain boundary energies and expansions
from first-principles calculations �DFT-LDA� with CASTEP �energies
calculated with MBPP in parentheses for comparison�.

Boundary Number of atoms
Expansion

�Å�
Energy
�Jm−2�

�3�111� 60 0.13 0.53 �0.52�
120 0.17 0.57 �0.57�

�3�112� 60 0.14 1.06 �1.07�
120 0.19 1.10

�3�112��2 /3,0� 60 0.43 1.06 �1.04�
120 0.43 1.10

2/3[11-1]

FIG. 4. �Color online� Creation of the �3�112��2 /3,0� bound-

ary �right� by a translation of 2 /3�111̄� from the �3�112��0,0�
boundary �left�. The arrows on the left image indicate the position
of the GB, which is a mirror plane. The structure on the right is
created by shifting all material to the right of the arrows �the GB

plane is held fixed� by 2 /3�111̄�. The resulting structure, the
�3�112��2 /3,0� boundary, has mirror-glide symmetry about the O2

GB plane; the glide distance is 1 /2�1̄10�. Both grain boundaries are
shown as 2�1�1 supercells. The shaded boxes with red borders
represent the same area of crystal for both structures. The black
dashed lines represent the borders of the simulation cell for each
boundary.
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FIG. 5. �Color online� Deviations from the bulk �111� interpla-
nar spacing and variation in rumpling for a relaxed �3�111� grain
boundary from DFT-LDA calculations. The black circles and green
�gray� circles represent interplanar spacing and rumpling data, re-
spectively, for the 120-atom model. The black crosses represent
interplanar spacing data for the 60-atom model. The dashed line at
y=0 is a guide to the eye.
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for ionic systems, electrostatic interactions between the con-
stituent ions. The reader is referred to Refs. 33 and 34 for
more information.

Finally, we consider the results for the �3�112��2 /3,0�
GB, which are shown in Fig. 7. The magnitude of both the
rumpling and the deviation from the bulk interplanar spacing
close to the interface is smallest for the �3�112��2 /3,0�
boundary compared to the previous two. This probably stems
from the mirror-glide symmetry of the �3�112��2 /3,0� GB,
which results in like-charged ions on opposite sides of the
interface having a staggered configuration. This is in contrast
to the �3�112��0,0� and �3�111� GBs, where the mirror-
symmetry of the boundary forces like-charged ions to be
directly opposite each other, thereby increasing the repulsion
between them and increasing the rumpling and interplanar
spacing oscillations.

The expansion for the �3�112��2 /3,0� boundary is also
much larger �0.43 Å� than for the other boundaries however,
puzzlingly, it has almost the same energy as the mirror sym-
metric �3�112��0,0� GB �see Table III�. Both CASTEP and
the MBPP codes predict very similar results for these two
boundaries, which gives us confidence that the observed
similarities between the two interfaces are due to physical
effects rather than numerical errors or inconsistencies. One
might argue that there is no justification for our surprise at
the two �112� GBs having such different expansions yet the
same energy, given we have just stated that for boundaries
with periodicity in the boundary plane, no simple relation-
ship between energy and expansion exists. While this is true,
one still intuitively expects that if the expansions between
two boundaries differ by a significant amount, then their en-
ergies will also differ. Figure 8 shows the coordination envi-
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FIG. 6. �Color online� Deviations from the bulk �112� interpla-
nar spacing and variation in rumpling for a relaxed �3�112��0,0�
mirror symmetric grain boundary from DFT-LDA calculations. The
black circles and green �gray� circles represent interplanar spacing
and rumpling data, respectively, for the 120-atom model. The black
and green �gray� crosses represent interplanar spacing and rumpling
data for the 60-atom model, respectively. The dashed line at y=0 is
a guide to the eye.
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FIG. 7. �Color online� Deviations from the bulk �112�
interplanar spacing and variation in rumpling for a relaxed
�3�112��−1 /3,0� grain boundary from DFT-LDA calculations. The
black circles and green �gray� circles represent interplanar spacing
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FIG. 8. �Color online� The two unrelaxed �3�112� grain bound-
aries with yellow Ti coordination polyhedra shown. The Ti ions are
not shown, but they are located at the centers of the octahedra �or
on the base of the square-based pyramids�. The �3�112��2 /3,0�
GB in �b� has been plotted as a 1�2�1 supercell so the five-
coordinate Ti atoms at the interface �enclosed in solid-stripe square-
based pyramids� can be more easily seen. An individual five-
coordinate Ti atom is shown in �c�. The orientation of the
boundaries is the same as in Figs. 2 and 3, except that the tilt axis is
inclined to the page to reveal the coordination polyhedra more
effectively.
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ronments of the Ti ions in each of the two boundaries. In
bulk SrTiO3, the Ti ions are surrounded by six O ions in an
octahedral cage. This is also the case for the �3�112��0,0�
GB, where the Ti octahedra from each grain share corners at
the grain boundary. In contrast, the Ti ions at the
�3�112��2 /3,0� grain boundary are fivefold coordinated and
form square-based pyramids, which also share corners across
the boundary �this fivefold coordination of the Ti ions is
particularly interesting because fivefold coordinate Ti is
rarely found in naturally occurring solid-state materials�. Ex-
ploring the effects of the differences in coordination of the Ti
ions at the two grain boundaries may provide some clues
about their structural and energetic properties. We are inves-
tigating this as part of a continuing study.

In the Sec. III B, we see how the candidate interatomic
potentials perform in describing the structure and energetics
of our chosen grain boundaries. Before moving on, let us
summarize the results of the first-principles simulations:

�i� Two stable translation states were identified for the
�3�112� boundaries, one at t= �0,0� and one at t= �2 /3,0�;

�ii� The �3�111� boundary has the lowest energy while
the two �112� boundaries are indistinguishable in energy;

�iii� The �3�111� and �3�112��0,0� boundaries have
similar expansions while the �3�112��2 /3,0� GB has a
much larger expansion;

�iv� All three boundaries exhibit interplanar spacing oscil-
lations and rumpling of planes parallel to the boundary.

In order to be considered credible, an interatomic poten-
tial should be able to reproduce at least the structural trends.
If it can also reproduce the DFT energy ordering of the
boundaries, it would be considered very successful.

B. Interatomic potential calculations

The Akhtar, McCoy, and Crawford potentials consist of
both short-range Buckingham and shell model terms. For

these potentials we have performed calculations within the
rigid ion model �Buckingham part only with “frozen” shells�
and within the shell model. The results of the rigid ion model
calculations are discussed first.

1. Rigid ion model calculations

Figure 9 compares the relaxed structure of the �3�111�
boundary from both DFT-LDA and interatomic potential cal-
culations. The Akhtar, McCoy, and Crawford potentials ex-
aggerate both the interplanar spacing oscillations and rum-
pling compared to the DFT-LDA results. The Thomas
potential, the simplest of the four we are testing, reproduces
the DFT-LDA relaxation pattern quite well.

Figure 10 shows the interplanar spacing and rumpling os-
cillations for the relaxed �3�112��0,0� boundary. This time
there is less variation in how the interatomic potentials per-
form compared to the DFT-LDA structure and in contrast to
the �3�111� GB, the potentials tend to slightly underestimate
the atomic relaxations. DFT-LDA and potential calculations
show relaxations that oscillate with the same phase and de-
cay with distance from the interface in a similar way, al-
though the amplitudes of the oscillations for the Akhtar po-
tential are much greater and they decay more slowly.

The interplanar spacing and rumpling oscillations for the
relaxed �3�112��2 /3,0� boundary are shown in Fig. 11. The
potentials underestimate the deviation from the bulk interpla-
nar spacing close to the boundary compared to DFT-LDA,
but overestimate the magnitude of the rumpling. There is
good agreement between the potentials and DFT-LDA as the
distance from the boundary increases.

Table IV shows the energy and expansion for each bound-
ary calculated with the four test potentials. None of the po-
tentials is able to reproduce the energy ordering predicted by
the DFT-LDA simulations. Both the Akhtar and Crawford
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FIG. 9. �Color online� Left: Deviations from
the bulk �111� interplanar spacing. Right: Varia-
tion in rumpling for a relaxed 120-atom model of
a �3�111� grain boundary from both DFT-LDA
and interatomic potential �frozen shells� calcula-
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potentials predict the �3�111� GB to be the highest in en-
ergy, whereas the ab initio simulations predict it to be the
lowest in energy. The McCoy and Thomas potentials cor-
rectly give the �3�111� GB as the lowest energy but they
both predict the �3�112��2 /3,0� to be lower in energy than
the �3�112��0,0� �these latter boundaries have almost the
same energy in DFT-LDA calculations�. Although the poten-
tials perform poorly in predicting the energy trends between
boundaries, they can reproduce the DFT-LDA trend for the
expansions �with the exception of the Akhtar potential�.

We have also studied the convergence behavior of the
potentials by performing calculations on 60-, 120-, and 240-
atom systems �the distance between the grain boundaries
doubles as the number of atoms in the model doubles�. The
energies and expansions calculated with the Thomas and Mc-
Coy potentials for the two �3�112� boundaries are essen-
tially converged with only 60 atoms. The energy and expan-
sion calculated with the Crawford potential for the
�3�112��2 /3,0� GB is converged with 60 atoms, however
the energy and expansion for the �3�112��0,0� interface do
not appear to have converged with cell size.

All of the potentials show the same convergence behavior
for the �3�111� GB: the expansion is smaller and the grain
boundary energy is lower for the 60-atom model compared
to the 120- and 240-atom models. This could be because
there is an attractive interaction between the boundaries in
the 60-atom model, the strength of which decreases as the
distance between the boundaries in the 120- and 240-atom
models increases. Another possibility is that the energy land-
scape for the 60-atom model contains a low-energy pathway
to a structure with a smaller expansion and lower grain
boundary energy �the energy landscape we are referring to is
that of the “unconstrained � surface,” i.e., the atoms are
freed to move in the x, y, and z directions�. The 60-, 120-,
and 240-atom models differ only in the amount of bulk ma-
terial present between interfaces, however they all have dif-
ferent energy landscapes and the pathway to the minimum
energy structure for the 60-atom model might be absent or
difficult to get to in the 120- and 240-atom models. We tested
these hypotheses by performing an additional set of calcula-
tions in which the 120-atom model was constructed by tak-
ing a relaxed 60-atom model and inserting the appropriate
amount of unrelaxed bulk material between the boundaries.
Any low-energy pathways might become more accessible if
the grain boundary is deliberately prepared in a relaxed, low-
energy state. We then performed a full relaxation on the “pre-
relaxed” 120-atom boundary, calculating the expansion and

energy as usual. The results obtained through this procedure
were the same as those obtained through calculations on
boundaries which had not been pre-relaxed. This suggests

TABLE IV. Relaxed grain boundary energies and expansions
from interatomic potential calculations �rigid ion approximation�.

Grain Boundary
Expansion

�Å�
Energy
�Jm−2�

McCoy

�3�111�, 60 atoms 0.17 0.59

120 atoms 0.24 0.81

240 atoms 0.24 0.86

�3�112��0,0�, 60 atoms 0.14 1.83

120 atoms 0.14 1.86

�3�112��2 /3,0�, 60 atoms 0.43 1.47

120 atoms 0.43 1.46

Thomas

�3�111�, 60 atoms 0.15 0.29

120 atoms 0.17 0.35

240 atoms 0.17 0.35

�3�112��0,0�, 60 atoms 0.19 1.58

120 atoms 0.19 1.60

�3�112��2 /3,0�, 60 atoms 0.48 1.26

120 atoms 0.48 1.26

Akhtar

�3�111�, 60 atoms 0.20 1.30

120 atoms 0.30 1.75

240 atoms 0.30 1.79

�3�112��0,0�, 60 atoms 0.17 1.11

120 atoms 0.14 1.10

�3�112��2 /3,0�, 60 atoms 0.24 1.24

120 atoms 0.10 0.66

Crawford

�3�111�, 60 atoms 0.24 1.49

120 atoms 0.25 1.83

240 atoms 0.25 1.85

�3�112��0,0�, 60 atoms 0.17 1.67

120 atoms 0.19 1.76

240 atoms 0.14 1.64

�3�112��2 /3,0�, 60 atoms 0.36 1.64

120 atoms 0.36 1.66
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FIG. 11. �Color online� Left: Deviations from
the bulk �112� interplanar spacing. Right: Varia-
tion in rumpling for a relaxed 120-atom model of
a �3�112��2 /3,0� grain boundary from both
DFT-LDA and interatomic potential �frozen
shells� calculations. The x axis represents the
number of planes from the grain boundary for
both graphs. The dashed lines at y=0 are a guide
to the eye.
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that attractive interactions between the boundaries in the 60-
atom model are responsible for the smaller expansion and
lower energy, rather than the absence of a low-energy path-
way on the energy landscape for the 120- and 240-atom
models.

Some general trends can be identified with respect to the
grain boundary structures and energies produced by the in-
teratomic potentials. The interplanar spacing and rumpling
diagrams in Figs. 9–11 show that the agreement between the
potentials and DFT-LDA generally improves as the distance
from the boundary increases. This is not surprising consider-
ing the potentials have been fitted to the structure of bulk
SrTiO3. Of the �112� boundaries, the potentials predict the
�3�112��2 /3,0� GB to be lower in energy by an amount
greater ��25%� than that predicted by DFT-LDA �the Craw-
ford potential gives the two boundaries as equal in energy;
however, given the �3�111� GB is predicted to have the
highest energy with this potential, the result is probably for-
tuitous�. Both of these observations are linked to the trans-
ferability of the test potentials. The transferability of any
potential is ultimately determined by the physics included in
the form of the potential model. Hence, an improvement in
the structural and energetic description of the grain bound-
aries would require going beyond the rigid ion approxima-
tion.

2. Shell model calculations

The interatomic potentials we have tested assume con-
stant ionic charges on all the atoms in the system. Close to
the interface however, the tendency for charge transfer from
cation to anion will differ from that in the bulk.33 Charge
transfer is one way in which nearest-neighbor like-charged
ions at the interface can reduce the electrostatic repulsion, so
atoms close to the boundary may be more covalent than
those in the bulk. Due to the lower point symmetry of the
ions at interfaces, they can also lower their energy by dipole
polarization. The rigid ion model is essentially a model of
charged hard spheres and cannot describe these effects.
Hence, if charge transfer and polarization effects are impor-
tant close to interfaces �and in perovskite titanates, in gen-
eral�, then we might reasonably assume that a shell model
will improve on the predictions of the rigid ion model. In
fact, we found this not to be the case, as Fig. 12 illustrates.
Figure 12 is an interplanar spacing diagram for the �3�111�
GB calculated with the McCoy potential, in both its rigid ion
and shell model variants; also shown are the DFT-LDA re-
sults. The shell model does not significantly improve on the
rigid ion model structure and we found the same result for
the Akhtar and Crawford potentials. There was also no or
little improvement in the energy ordering of the boundaries.
In addition, the shell model simulations became unstable in
many cases. For example, if the core-shell displacements are
too large, the core-shell distance can exceed the cutoff for the
harmonic spring interaction �set at 0.6 Å in GULP�. This re-
sults in shells detaching from their cores and attaching them-
selves to the cores of other ions. It is possible to avoid �or at
least limit� this behavior by using an anharmonic spring con-
stant. However, we felt this extra effort was not justified

given that the shell model did not seem to improve the rigid
ion results.

We are not the first to note that shell models �in the form
originally conceived by Dick and Overhauser� do not neces-
sarily improve upon the rigid ion approximation.26,35–37 Al-
though our current findings suggest otherwise, we acknowl-
edge that some authors have been able to successfully
describe a range of phenomena using the shell model �in
some cases it is difficult to credit the success of a calculation
to the shell model because many authors do not test the rigid
ion and shell model approximations separately�. In a recent
review, Phillpot and coworkers38 cited several examples of
shell models accurately reproducing the phase behavior of a
number of complex oxides, including KNbO3, BaTiO3, and
PbTiO3. However, phase transitions in these materials pro-
ceed by symmetry lowering and this is easier to describe
with a potential model than the complex polarization behav-
ior of atoms at interfaces and grain boundaries. In previous
work, we studied polarization effects at interfaces in the
Ruddlesden-Popper and Magnéli phases of SrTiO3 using a
simplified tight-binding model and density functional pertur-
bation theory �DFPT�.39 The tight-binding model was not
able to describe the large enhancement of the Born effective
charge for Ti at the Magnéli phase interface, even though it
explicitly included intersite charge transfer interactions be-
tween the oxygen 2s and 2p and Ti 3d states. We can expect
the Born effective charges of atoms at perovskite grain
boundaries to be even more complex because the atoms are
in very low symmetry environments. Hence, it is unlikely
that a shell model will be able to capture the essential phys-
ics required to reproduce the Born effective charge of an O
or Ti atom at a grain boundary in SrTiO3.40

C. Grain boundary structures from interatomic potential
calculations

Table IV shows that the Thomas, McCoy, and Crawford
potentials predict the correct trend for the expansion of the
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FIG. 12. �Color online� Deviations from the bulk �111� interpla-
nar spacing for a relaxed 120-atom model of a �3�111� grain
boundary from DFT-LDA and rigid ion and shell model calculations
with the McCoy potential. The dashed line at y=0 is a guide to the
eye.
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boundaries. Although there are some discrepancies between
the structures produced by the potentials and the DFT-LDA
structures, Figs. 9–11 show that there is generally reasonable
agreement between them. One way to quantify the quality of
the interatomic potential structures is to take their coordi-
nates and perform a single-point DFT energy calculation,
i.e., no further atomic relaxation. If the interatomic potential
structures are really in good agreement with the DFT-LDA
structures, their energies should be closely clustered just
above the DFT-LDA energies. We performed this additional
series of calculations for all four of our test potentials; the
results are shown in Table V.

Given the results presented in Table IV, we might expect
the energies of the Thomas and McCoy structures to be clos-
est to the DFT-LDA energies, followed by the Crawford and
Akhtar structures. Table V shows that the Akhtar potential
does indeed produce the worst quality structures but the
trends for the other potentials are somewhat unexpected. The
McCoy structures for the �3�111� and �3�112��0,0� bound-
aries are predicted by DFT-LDA to be equal in energy,
whereas the McCoy potential predicts the �3�111� GB to be
the lowest in energy �see Table IV�. Conversely, the Craw-
ford structure for the �3�111� GB is predicted by DFT-LDA
to be the lowest in energy of the three boundaries, whereas
the Crawford potential predicts the same boundary to be the
highest in energy. The Thomas structures are closest in en-
ergy to the DFT-LDA ones. None of the potentials produce
structures for the two �3�112� boundaries which are indis-
tinguishable in energy �like the DFT-LDA structures�. How-
ever, Table IV shows that the Thomas and McCoy potentials
both predict the �3�112��2 /3,0� boundary to be lower in
energy than the �3�112��0,0� GB, whereas Table V shows
the opposite trend: DFT-LDA predicts the McCoy, Thomas,
and Crawford �3�112��2 /3,0� structures to be higher in en-
ergy than the �3�112��0,0� GB structures. Figure 11, the
interplanar spacing and rumpling diagram for the
�3�112��2 /3,0� GB, shows that all of the potentials overes-
timate the magnitude of the rumpling close to the interface.
The McCoy potential overestimates the most, followed by
the Crawford potential, while the Thomas potential overesti-
mates the least. Looking at Table V, the energy of the
�3�112��2 /3,0� GB produced by the McCoy potential devi-
ates the most from the DFT-LDA result, followed by the
Crawford structure. The energy of the �3�112��2 /3,0� GB
produced by the Thomas potential is closest to the DFT-LDA
energy. This suggests that, for the �3�112��2 /3,0� GB at

least, the potentials favor structures with greater rumpling at
the interface.

The results of our interatomic potential calculations can
be summarized as follows:

�i� None of the potentials can accurately predict the cor-
rect energy ordering of the boundaries, although the Thomas
and McCoy potentials do give the �3�111� as the lowest
energy;

�ii� The Thomas, McCoy, and Crawford potentials predict
the correct trend for the expansion and the Thomas potential
produces structures in reasonable agreement with DFT-LDA;

�iii� The shell model does not improve upon the rigid ion
approximation for the potentials we have tested.

These points are summarized graphically in Fig. 13.

IV. DISCUSSION

There have been far fewer classical �or ab initio� simula-
tion studies on grain boundaries in ionic oxides than in met-
als however, there are some examples in the literature. How
do our findings compare to those of other authors?

TABLE V. Grain boundary energies of interatomic potential
structures calculated with DFT-LDA.

Energy
�Jm−2�

Model �3�111� �3�112��0,0� �3�112��2 /3,0�
McCoy 1.29 1.29 1.81

Akhtar 1.50 1.43 1.93

Thomas 0.81 1.16 1.37

Crawford 1.11 1.17 1.56

DFT-LDA 0.53 1.06 1.06
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Tasker and Duffy35 studied the structure of a �5�001�
twist boundary in NiO using a rigid ion model �they also
tried a shell model but concluded that it did not change the
results significantly�. Their simulations predicted a structure
with a small expansion and a reduced density of ions in the
boundary plane. The results are consistent with the experi-
mental observations of Sun and Balluffi41 on the stability of
twist boundaries in another rocksalt-structured oxide, MgO.
Shell model calculations on the same �5�001� twist bound-
ary in MgO also showed that the boundary was stable only if
ions were removed from the boundary plane.42 The structure
produced by the shell model calculations was later confirmed
by DFT simulations.43

Shell model calculations on the �5�1̄20��001� tilt bound-
ary in TiO2 predicted a stable structure characterized by an

in-plane translation of �1 /6�a0�1̄20� �the authors do not give
the reference state from which the translation is measured�.44

Image simulations on the theoretical structure were in good
agreement with experimental HRTEM images, although the
shell model did not reproduce the negative expansion �con-
traction� observed experimentally. DFT calculations on the
same interface also failed to predict a contraction of the
boundary but did confirm the translation state as

�1 /6�a0�1̄20�.45

Marinopoulos et al.46 carried out a series of DFT and shell
model calculations in an effort to determine the most stable
basal twin interface in �-Al2O3. Their DFT results indicated
that the rotation twin was the most energetically favorable,
consistent with HRTEM experiments. The structures pro-
duced by the shell model were in reasonable agreement with
the DFT structures; however, the shell model was unable to
reproduce the magnitude of the energy differences between
the candidate structures or the DFT energy ordering for the
two higher-energy twin boundaries.

Finally, there have been a few previous atomistic simula-
tion studies on grain boundaries in SrTiO3. Kienzle and
coworkers47 calculated the structure and energy of the SrO-
and Ti-terminated �3�111� GBs using the shell model of
Akhtar. The Ti-terminated variant was correctly predicted to
be lower in energy than the SrO-terminated GB �compared to
DFT �Ref. 11��, although the authors also noted that there
were significant discrepancies between the experimental
structure and those produced by the shell models. Ravikumar
et al.48 studied the structure and energetics of the
�5�310��001� tilt boundary in SrTiO3 using the Akhtar po-
tential with frozen shells. The theoretical results were com-
pared to Z-contrast scanning transmission electron micros-
copy �STEM� images49 of the same boundary. The authors
concluded that although some basic structural trends were
common to both the experimental and theoretical results,
quantitative comparisons would require both approaches to
be “refined considerably.”49

It is difficult to draw systematic conclusions from the
studies reviewed above because the methods used in each
case are slightly different. Some authors have performed in-
teratomic potential calculations on the structure of a given
boundary and compared the result to experiment. Some au-
thors have compared experimental results to both interatomic
potential and DFT calculations. Most authors have consid-

ered only a single boundary and all authors have used a
single interatomic potential. Systematic studies on the reli-
ability of classical potentials for grain boundaries in ionic
oxides are lacking. Nonetheless, some general trends seem to
emerge. Structures produced by interatomic potential calcu-
lations agree reasonably well with experiment and, where the
data is available, structures produced by DFT calculations.
The potentials do less well in correctly ordering the energies
of boundaries, or predicting energy differences between
boundaries. Despite this latter inadequacy, in all the cases
discussed above, results from interatomic potential calcula-
tions have aided the interpretation of experimental data and,
in combination with DFT calculations, provided qualitative
insights which would not be accessible from an experimental
analysis alone.

V. SUMMARY AND CONCLUSIONS

We have calculated the relaxed structures and energies of
the �3�111�, �3�112��0,0�, and �3�112��2 /3,0� grain
boundaries in SrTiO3 with four different interatomic poten-
tials; the results were compared to DFT-LDA calculations on
the same boundaries. Our aim was to identify a potential
which could accurately describe at least the structures of our
chosen grain boundaries �compared to DFT-LDA� and which
could therefore be used in larger-scale atomistic simulations
of more complex SrTiO3 interfaces. We have also critically
examined the shell model approximation.

None of the interatomic potentials we tested produced
grain boundary energy orderings in agreement with the DFT-
LDA calculations. The Thomas and McCoy potentials cor-
rectly predict the �3�111� GB to be the lowest in energy but
are not transferable enough to reproduce the DFT-LDA en-
ergy ordering of the two �3�112� boundaries. This is prob-
ably due to the presence of fivefold coordinate Ti ions at the
�3�112��2 /3,0� interface, i.e., the fivefold coordinate Ti
ions are chemically different to the sixfold coordinate Ti ions
at the �3�112� interface and the rigid ion model cannot cap-
ture these differences. Both the Crawford and Akhtar poten-
tials predict the �3�111� GB to be the highest in energy.

All the potentials �with the exception of the Akhtar poten-
tial� produce structures which are in reasonably good agree-
ment with those from DFT-LDA calculations. The structures
generated by the Thomas potential are closest in energy to
the DFT-LDA structures. The agreement between DFT-LDA
and the Thomas and McCoy potentials with respect to grain
boundary expansions is particularly impressive considering
the simplicity of the rigid ion model. The agreement between
the potentials and DFT-LDA generally improves as the dis-
tance from the boundary increases, i.e., as the atomic struc-
ture tends to that of bulk SrTiO3. Close to the boundary, the
potentials struggle to describe the structural distortions
caused by large interplanar spacing and rumpling oscilla-
tions.

Our attempts to improve upon the rigid ion results by
performing an additional series of shell model calculations
were not successful. We found that the grain boundary ener-
gies and structures calculated with the shell models we tested
differed little from the rigid ion model results. We argue that
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this simple model of dipolar polarizability will be unable to
�routinely� correctly describe the complex polarization be-
havior found at SrTiO3 interfaces and grain boundaries,
where the atoms are in low-symmetry environments.

We considered only stoichiometric grain boundaries in
this work but in a “real” SrTiO3 polycrystal, which will con-
tain dopants, defects, and impurities, the vast majority of
boundaries are likely to be nonstoichiometric. Hence, it is
worth considering how our conclusions might be modified if
the potentials were tested on nonstoichiometric interfaces. As
noted in Sec. I, the energy of nonstoichiometric grain bound-
aries is a function of the chemical potentials of the compo-
nent materials. For SrTiO3 we might choose those compo-
nents to be SrO, TiO2, and O. The chemical potentials of
these compounds in their standard states can be approxi-
mated as the total energies of bulk SrO and TiO2 at T
=0 K �a thermodynamic cycle can be constructed to calcu-
late the chemical potential of oxygen, as described in Ref.
50�. However, we cannot get much further with interatomic
potentials. The total energies of these bulk quantities must be
calculated using the Sr-O and Ti-O interaction potentials
from the same SrTiO3 interatomic potential used to calculate
the grain boundary total energy. This will induce an error in
the computed interfacial energy because the individual inter-
action potentials will not be sufficiently transferable. Charge

transfer and charge density rearrangement effects will be
greater if there are point defects and dopants at the interface
and the potentials would have to describe the energies of the
relevant point defects. Furthermore, since nonstoichiometry
introduces the possibility of charged defects, the electronic
structure must be explicitly considered. The energy of
charged point defects depends on the Fermi energy, which in
turn depends on the doping or stoichiometry. Hence, the rigid
ion approximation will become increasingly more severe and
increasingly less accurate. It is unlikely that any of the po-
tentials we have tested are transferable enough to accurately
describe nonstoichiometric grain boundaries. The perfor-
mance of the potentials discussed above should therefore
probably be regarded as the “best case scenario.”
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